On Proof and Evidence
Words, words
Sometimes – actually oftentimes – we can get pretty sloppy and careless in our use of words.
Take the use of the words “proof” and “evidence”. Proof and evidence, like speed and velocity, or theory and guess, have colloquial definitions that often lead to confusion. In order to smooth the progress of communication and avoid misunderstanding, these words have been given technical definitions in science and philosophy. For example, speed is defined as the magnitude of velocity; the latter is a vector, the former is the scalar magnitude of that vector. Also, a scientific theory is not simply a guess; rather, it is a system of ideas constructed from a verified set of generalizations and observations. In the same way, scientists and philosophers use the words proof and evidence to designate two very different things. For example, we prove a mathematical theorem instead of “finding evidences” for its truth, while we accumulate the evidence for a particular scientific theory but we never “prove” a theory.
What’s the difference? The distinction is best illustrated by examples.
Sometimes – actually oftentimes – we can get pretty sloppy and careless in our use of words.
Take the use of the words “proof” and “evidence”. Proof and evidence, like speed and velocity, or theory and guess, have colloquial definitions that often lead to confusion. In order to smooth the progress of communication and avoid misunderstanding, these words have been given technical definitions in science and philosophy. For example, speed is defined as the magnitude of velocity; the latter is a vector, the former is the scalar magnitude of that vector. Also, a scientific theory is not simply a guess; rather, it is a system of ideas constructed from a verified set of generalizations and observations. In the same way, scientists and philosophers use the words proof and evidence to designate two very different things. For example, we prove a mathematical theorem instead of “finding evidences” for its truth, while we accumulate the evidence for a particular scientific theory but we never “prove” a theory.
What’s the difference? The distinction is best illustrated by examples.